

Vistle

Tutorial

HLRS

May 2021 

Authors:

Leyla Kern

Martin Aumüller 

Content

1. About Vistle	 3

2. Getting started	 4

2.1. Download and installation	 4

2.2. Starting Vistle	 4

3. The Vistle GUI	 5

4. COVER	 6

5. Vistle modules	 7

6. Creating a module pipeline	 8

6.1. Pipeline steps	 8

6.2. Examples	 9

7. Basic tutorials	 12

7.1. Tutorial 1	 12

7.2. Tutorial 2	 14

8. Further links	 16

 of 2 16

1. About Vistle

Vistle is a software environment for scientific visualization of large-scale data sets. It implements a
data-parallel visualization pipeline and can distribute the pipeline steps onto several interconnected
clusters. Workflows are configured in an explicit graphical user interface. Vistle has a special focus
on working in immersive virtual environments such as CAVEs and head-mounted displays. In order
to enable visualization of large-scale data sets in such environments, object and image based
remote rendering can be configured within the visualization workflows.

This document gives an introduction to Vistle. Key components are explained and simple examples
presented, such that the user can easily learn the basic usage of Vistle. 

 of 3 16

2. Getting started

2.1. Download and installation

You can obtain Vistle from the Github repository:

	 https://github.com/vistle/vistle

Make sure you have installed all build requirements and follow the installation guide for Vistle as
depicted on Github.

On MacOS, you can also use Homebrew for installation:

> brew install hlrs-vis/tap/vistle

2.2. Starting Vistle

You can start Vistle from the command line using the command

	 > vistle

This will open the Vistle GUI. You can also append the path to an existing Vistle file (.vsl) to open it on
startup.

	 > vistle myFile.vsl

For a complete list of arguments, type

	 > vistle -h

 of 4 16

3. The Vistle GUI

The Vistle user interface is composed of several components, as shown in Figure 1. At the top of the
window, there is a menubar and a Toolbar for shortcuts to often used menu items. The left area
below is the Workflow Area where the visualization pipeline is displayed graphically. At the right-hand
side, there is the module window showing the Module Browser, composed of the Module Library, a
list of available visualization modules, and the Module Filter. Using the tabs below, one can switch to
the Module Parameters (not shown in Figure 1). The bottom pane is the Vistle Console, where you
can enter Python commands and where modules can display messages. At the bottom of the
window is a status bar which will occasionally display progress information.

For the following steps, it can be useful to follow the description in Vistle on a sample application. To
do so, you can load a predefined module pipeline: Click on Open in the Toolbar, navigate to your
Vistle directory and the examples folder. From there select to open airbag.vsl. The file browser
window will vanish and modules as shown in Figure 1 will appear in the Workflow Area. Also, a new
window, COVER, will open.

To execute the workflow, press the Execute button, in the Toolbar of the Vistle GUI. You should now
see the visualized animation in the COVER window.

 of 5 16

Figure 1: The Vistle GUI

4. COVER

COVER is the module responsible for displaying the 3D scene. You can use it on a desktop, on
immersive multi-screen projection system and with VR glasses. Here, we learn how to use it when
configured for the desktop.

The COVER window consists of a menubar in the top, a Toolbar below and the render area, where
the scene is shown. You can interact with the scene using your mouse. Moreover, there is the VR
Menu, usually at the right-hand side of the render area. From there, as well as from the menu and
Toolbar, you can configure several often used settings. In Figure 2, which shows the COVER window,
the Toolbar buttons functions are indicated by labels. From left to right you can find settings for
animations, views, navigation and workflow execution.

When an entry in the VR Menu is selected, a frame for its content opens up. Click the Menu entry
once more to hide the frame again.

If COVER is started from within Vistle, a Vistle menu item is available in the menubar. From there it is
possible to manipulate Module Parameters and enable interactors.

Further, COVER comes along with a tablet user interface (TabletUI), which allows the user to adjust
many other parameters and in many cases offers more detailed settings. The TabletUI attaches to a
running COVER and can be started using the command:

	 > tabletUI

You can also start COVER without Vistle, by typing:

	 > opencover

 of 6 16

Figure 2: COVER renderer with desktop and VR user interface.

5. Vistle modules

Vistle Modules encapsulate processing steps of the workflow. They are represented by turquoise
boxes. Modules can have input and output ports to exchange data with subsequent or preceding
modules via shared memory. These ports are rendered as red and yellow squares for input and
output, respectively. Links between two ports are depicted by lines. If you hover over a port using
the mouse, information on the object type on this port is shown, e.g. grid, scalar, vector. This is
useful, to know which two ports are compatible. Different types demand different processing. For
instances, vector data is preferably handled by Tracer and VectorField, whereas scalar data is
processed by IsoSurface or DomainSurface, among others. Examples for processing of the different
types are given later on.

Modules can have a number of parameters that can be changed in the tab of the module window. To
see the parameters for a different module, it needs to be selected by a click on the module in the
Workflow Area. The selected module will be highlighted by a violet frame.

Double-click on a module triggers its execution, and also of subsequent modules. The execution
state is indicated by a yellow frame. Right-click on a module opens a menu for additional options. 
If a module vanishes from the Workflow Area, this means it has crashed.

 of 7 16

ModuleName

Figure 3: Vistle module

input port

output port

6. Creating a module pipeline

A workflow is assembled as a pipeline of modules in the Workflow Area. The modules can be chosen
from the list in the module window and are added using drag-and-drop. A connection between two
modules is established by linking their ports i.e. clicking and dragging the mouse from one port to
the other. If the line does not remain after releasing the mouse, the connection was invalid. In case
the input port is already linked to another port, it might not be possible for some modules to add a
second port connection. The invalid link will appear as a grey line and does not function as a
connector. A connection can be deleted by double-clicking on it. It is up to the user to ensure
compatible connections. However, modules might print helpful information on execution.

When assembling a module pipeline, some modules are useful to extract information which can be
used for validation or retrieving meta data: BoundingBox, PrintMetadata, ObjectStatistics, Extrema.

6.1. Pipeline steps

The necessary stages when creating a workflow strongly depend on the individual application.
However, the following workflow can be used as a reference:

First, data is required, which is typically retrieved by importing data from a file or directory. Data is
acquired using read modules. A number of these modules is available, each supporting the import
from files of different formats. Examples are ReadFoam, ReadCovise or ReadNek5000.

Next, features of interest can be filtered from the data set. This can be done by cutting off redundant
parts using the module CutGeometry, extracting the outer surface of an object using DomainSurface
or filtering a specific grid layer using IndexManifolds, for instance.

However, the then obtained geometries itself do not provide information about data values, but only
about the grid. Therefore, data values need to be mapped to the extracted objects. A Color module
can be added to convert data values into color values which are mapped to the surfaces. Moreover,
also geometries can also be created based on data values, as through the IsoSurface module.‚

The generated objects are then forwarded to the renderer, COVER and displayed.

In summary, a map implementing the stages depicted in Figure 4, can look as follows:

Note, that not all modules can be employed on all data sets, as some might require specific data
structures, such as uniform grids or 3D vector data.

 of 8 16

ReadCovise DomainSurface Color COVER

Figure 5: Example of a Vistle pipeline implementation

Acquisition Filter Map Display

Figure 4: Pipeline steps

Render

6.2. Examples

Some examples demonstrating the usage of basic modules are given in the following. Moreover,
hints for addressing common issues are listed. The examples are separated into scalar data
visualization and vector data visualization. The former can be applied when a scalar field such as
temperature or pressure is present. The latter is used to handle vector fields like wind fields or flows.

Scalar data

Figure 6 shows three examples for scalar data visualisation. Sample data is generated using the
Gendat module. Gendat can be replaced by a read module, providing it has the according output
object types (i.e. scalar data).

Gendat has three output ports. From left to right is the underlying grid, scalar and vector data
available. In this example we will use the central port, for scalar data. This is then passed to the
*Surface modules, to extract and compute object surfaces. Example a) extracts the grid surface
using DomainSurface; in b) the surface is computed based on an isovalue or -point; in c) the
computation of an intersection area of the grid with a cutting surface is implemented.

Besides, in case a) and c), a Color module enables colorization of the extracted surface by setting a
color value range to map the data values to.

The corresponding renderings for the three examples are shown in Figure 7.

 of 9 16

grid	 scalar data	 vector data

data

color

a) DomainSurface 	 	 b) IsoSurface	 	 c) CuttingSurface

Figure 6: Example maps for scalar data processing

a) DomainSurface 	 	 b) IsoSurface	 c) CuttingSurface

Figure 7: Renderings of scalar data

Vector data

For vector data, the modules Tracer and VectorField can be used. An example for the usage of Tracer
is shown in Figure 8, computing streamlines from vector data. Sample vector data is generated using
the Gendat module. It is then forwarded to the Tracer. The Tracer provides various output, however in
this tutorial only the first port, containing data, is used. The data values are then mapped to a color
map in the subsequent Color module. For refinement of the streamlines’ display, the Tubes module is
appended where geometry properties like thickness of the streamlines can be adjusted. Before
passing the object to COVER, the geometry needs to be converted into Triangles.

Hints

In case you observe difficulties when assembling the above shown examples yourself, here are some
settings to check, in particular for the case that COVER just remains blank after execution.

COVER: Click on View all in the Toolbar of the COVER window (or press the key “V”) to adjust the
view such that the whole object is visible.

IsoSurface: Make sure, a reasonable isovalue (or -point) is set.

CuttingSurface: Use the PickInteractor in COVER to adjust the planes location and orientation 
	 (In the COVER menubar: Vistle → CuttingSurface → PickInteractor)

Tracer: In the Module Parameters, increase the length, number of points. User COVER’s
PickInteractor to adjust the starting location

Tubes: Thicken the streamlines, by increasing the tube’s radius in the Module Parameters.

 of 10 16

Figure 8: Example for vector data
processing

Figure 9: Example of vector data rendering

Meta data and information

As mentioned above, some prior knowledge is needed to set up a processing pipeline. Different data
structures demand for different processing, as shown for scalar and vector data. Also, data value
ranges or geometric extends might have to be known to achieve adequate preparation of the data.
Thus, the following supporting module should be kept in mind. Note, that these are just examples
and there are plenty more modules that can be used.

BoundingBox: Obtain extrema of a grid, such as minimal and maximal coordinates, the ID of the
partition containing these minima and maxima and the extremal indices.

Extrema: Retrieve minima and maxima of data values along with their partition ID and indices.

ObjectStatistics: Get information about the number of blocks, vertices and more

PrintMetaData: Get more elaborated information such as the object types and the number of ghosts
cells

 of 11 16

7. Basic tutorials

This chapter is a hands-on session in which you learn how to assemble a Vistle pipeline yourself. The
following tutorials teach you the basic usage of Vistle, so you can create your own module maps for
visualization.

Tutorial 1 demonstrates the very basics and gives detailed explanations. Scalar data obtained from a
VTK file is visualized using isosurfaces and cutting planes.

Tutorial 2 is more advanced and less guidelines are provided. There, COVISE data, both in scalar and
vector structure, is processed and besides surfaces, also streamlines are computed.

7.1. Tutorial 1

In this tutorial, data in VTK format is processed. Therefore, you need to download and unpack a
sample data set from the VTK website: http://www.vtk.org/files/VTKTextbook/Data.tgz. A CT scan of
the human heart will be visualized.

Assembling your first module map

1. Start Vistle:  

In your terminal, type 
> vistle

and the Vistle GUI will show up.

2. Start COVER: 
From the Module Browser on the right hand side, add a COVER module to the workflow by
clicking on COVER and dragging it to the Workflow Area. A module, rendered as a turquoise
box, will appear there. Also, a second window should show up: COVER.

3. Import data: In the Vistle GUI, add the module ReadVTK from the Module Browser to the
Workflow Area. After the module showed up there, click on it to find the Module Parameters
in the frame to the right. There, click on the folder symbol next to filename. A window
showing the file browser will show up. First, in the bottom, change the option Files of type to
Legacy VTK files. Then navigate to directory where you saved and extracted the VTK data.
Inside the directory, select Heart.vtk. Then click Open. If everything works fine, you should
now be able to change the parameter point field 0 to scalars.

4. Process data: Add an IsoSurface module from the list. Again, click on the module in the
Workflow Area to see the parameters. There, change the isovalue to 90.

Note: If you hover over the parameter names (left column) you can get information on the
parameter.

5. Connect modules: Link the modules by clicking and dragging the mouse from an output
port to an input port. In detail, connect the second output port of ReadVTK with the first
input port of IsoSurface; and the output of the latter with COVER.

6. Execute the pipeline by clicking on Execute in the Toolbar of the Vistle window.

Change to the COVER window. You will see some grey faces. To view the rendering from a
better perspective:

7. Click on View all in the Toolbar. 	

You should now see a grey object, a heart.

 of 12 16

Manipulation

Still in COVER, you can interact with the scene using your mouse to change the view.

Switch back to the Vistle window, then click on the IsoSurface module. In the Module
Parameters, you can change the isovalue or choose to compute the surface based on a
point rather than a given value (point or value). Adjust some of the parameters and execute
the pipeline again, to see how they affect your scene.

Colorize objects by data

Now, we will define a plane inside the object on which we would like to examine the data. Therefore,
we will convert the data values into color values.

8. Add a CuttingSurface module and a Color module to the map.

9. Link the modules: click on the central output port of ReadVTK and drag the mouse to the
input port of CuttingSurface. Then connect the output port of the latter with the input port of
COVER. Also, connect the central port of the reader with the input port of Color; and the left
output port of Color with COVER.

10. Execute the pipeline and switch to the COVER window.  
You will notice, that no new object is visible in the scene. This is because we haven’t set a
location for the cutting surface yet and default values are used instead (which might lie
outside the object). Go to the Module Parameters to check the values. The cutting plane is
define by a point on the plane (point) and the plane’s normal (vertex). You also have the
option to create other shapes of cutting surfaces (option) such as a sphere or a cylinder. For
now, just set point to (1,1,1).

Interaction

11. To simplify the positioning of the cutting plane, one can also interact with COVER. Therefore,

change to the COVER window and in the Toolbar click Vistle → CuttingSurface → Pick
Interactor. Next to the object, the interactor will appear as an arrow. Use the mouse on its
bottom for translation or on its tip for rotation. Drag the interactor somewhere inside the
object to see the colored cutting plane. To see the coordinates of the current position, go
back to the Module Parameters in the Vistle GUI.  

 of 13 16Figure 10: Module Map (left) and rendering (right) for the VTK data set

7.2. Tutorial 2

In the following example, we will assemble the visualization of a channel simulation to investigate the
flow inside the channel. We make use of streamlines, isosurfaces and domain surfaces to do so. If
you need help or want to validate your setup, you can find a solution in the vistle directory : example/
tiny-covise.vsl.

Creating a new map

1. Open Vistle or create a new, empty workspace

2. Import data from a COVISE file: Add a ReadCoviseDirectory module and set the directory
path in the parameters to covise/share/covise/example-data/tutorial which is located in your
COVISE directory

We would like to visualize geometry and pressure data: Select tiny_geo as grid and tiny_p for
field0.

3. To frame the simulated domain: Create a BoundingBox from the grid available at one of the
output ports of the reader.

	Also, create a DomainSurface based on grid to show the geometry of the object.

	Add a COVER module and connect it to the other modules

Don’t forget to check if everything is working as expected from time to time, by executing
the pipeline and taking a look at the rendered scene in COVER. There should be the domain
surface of the channel in grey and a wire box enclosing it.

4. Use the data of field0 to compute IsoSurfaces for an isovalue of 0.0, by connecting the
correct port of the reader module to an IsoSurface module

5. Highlight the isosurface by colorization (you can use the ColorAttribute module to assign a
uniform color by adding it between IsoSurface and COVER)

After execution of the pipeline, you need to zoom to the inside of the object to see the
isosurface. Alternatively, you can cut off some sections of the domain surface, as described
in the following.

Cutting objects

6. Remove parts of the domain to get a better view inside the channel: Replace the connection

between DomainSurface and COVER by a CutGeometry module 
	Set its point and vertex parameters to (0,0,0.1) and (0,0,1), respectively. And execute the
pipeline.

This will create a cut perpendicular to the z-Axis, removing the upper part of the channel.

7. Change the location of the cut. In the COVER window, there is a VR Menu. Select Vistle →
CutGeometry → PickInteractor. 
An arrow-like interactor will appear in the scene. Use the mouse on its bottom to translate or
on its tip to rotate the cutting plane

8. Proceed in a similar way, to add a CuttingSurface, which shows the data on a plane.
Therefore, add a CuttingSurface and connect the input port to field0. Then add and connect
Color in succession. Connect the left output of Color with COVER. Make use of the
PickInteractor to create a surface across the channel.

 of 14 16

Computing streamlines

9. Also, read velocity data form the file: In the parameters of ReadCoviseDirectory, change
field1 to tiny_velocity

10. Compute, colorize and thicken streamlines: Add a Tracer and connect it to the port field1 of
the reader. Starting from the first port (data) of the Tracer, add subsequently Color, Tubes and
ToTriangles. Link the first port of each of them with the respective following module (for
ToTriangles, this is COVER)

Adjust the parameters as follows:

	Tubes: 	 radius : 0.005 
	Tracer: no startp: 12

Execute. Switch to COVER, and activate the PickInteractor for Tracer from the VR Menu
(Vistle → Tracer → PickInteractor). Grab the interactor and move it somewhere inside the
object. You should now see the streamlines.

An example of the final rendering is shown in Figure 11. Note that colors and shapes can vary,
depending on parameters and position of interactors.

 of 15 16

Figure 11: Rendering of the channel flow

8. Further links

More details on Vistle, its functionalities and architecture, can be found on the Vistle website:

	 https://vistle.io

Many Vistle modules and features also exist in COVISE. For more information, take a look at COVISE
documentation and training material, available here:

	 https://www.hlrs.de/solutions-services/service-portfolio/visualization/covise/documentation/

There, you can also find documentation for COVER.

 of 16 16

https://vistle.io
https://www.hlrs.de/solutions-services/service-portfolio/visualization/covise/documentation/

	About Vistle
	Getting started
	Download and installation
	Starting Vistle
	The Vistle GUI
	COVER
	Vistle modules
	Creating a module pipeline
	Pipeline steps
	Examples
	Basic tutorials
	Tutorial 1
	Tutorial 2
	Further links

